
Using the Java Language to Develop Computer Based Patient Records
for use on the Internet
Alan E. Zuckerman, M.D.

Departments ofFamily Medicine and Pediatrics
Georgetown University School ofMedicine

Washington, DC

The development of the Java Programming
Language by Sun Microsystems has provided a new
tool for the development of Internet based
applications. Our preliminary work has shown how
Java can be used to program an Internet based
CBPR. Java is well suited to the needs of patient
records and can interface with clinical data
repositories written inMUMPS or SQL.

INTRODUCTION

While most authors have judged that technical
barriers play a small role in constraining the growth
of Computer-based Patient Records (CBPR),' the
dissemination of CBPR across the Internet demands
more secure and robust technology than that used by
a standalone CBPR. Using the World-Wide Web as a
distributed CBPR has be shown to be feasible but
may not be an optimal approach.2 New operating
systems and new computer platforms emphasize the
need for Platform Independent and Portable CBPR
systems.

This paper will discuss the design goals of the Java
language3 developed by Sun Microsystems and
adopted by many other vendors and their relevance
to the needs of a CBPR. The functional requirements
of a CBPR and how they will can be met using Java
will be reviewed along with alternative strategies for
implementing Internet based CBPR.

Java has much in Common with MUMPS
The MUMPS programming language was developed
by Greenes and colleagues 25 years ago5 and had a
profound effect on the development of Medical
Informatics and the CBPR The Computer Stored
Ambulatory Record (COSTAR) remains in
widespread use and was one of the first applications
developed using ANSI Standard MUMPS. Like
MUMPS, Java is Interpreted and designed to make
systems and programs more responsive to the
demands of the clinical environment than alternative
systems of its day. Like MUMPS, Java is relatively
simple and easy to learn allowing a single individual
to deploy complex system functions without the need
to learn and program details of the operating system
implementation. Both languages have earned praise
as rapid prototyping tools, but unlike MUMPS, Java
is not criticized for being too powerful to be safe, or

0195-4210/96/$5.00 1996 AMIA, Inc.

too ciyptic for one programmer to understand what
another has done.

DESIGN GOALS OF JAVA

Java is Multi-platform
The most striking new feature of Java is the ability to
run binary Java Bytecodes (the instruction set of the
Java Virtual Machine) on a variety of computers and
operating systems with the look and feel of native
applications. Developing a CBPR in Java allows the
same program code to run on Windows, Unix and
MacOS. The Java Advanced Windows Toolkit
(AWT) provides a common Graphic User Interface
(GUI) which is easily moved across platforms. Part
of the AWT are intelligent layout managers which
place the actual interface components within their
containers. The Java Virtual Machine is being
implemented in custom microprocessors and Sun is
developing a simple operating system to allow
building inexpensive Java computers for Internet
access. The performance of Java can be improved
through the use of Just-in-Time compilers, such as
the one recently added to Netscape Navigator 3.0,
which translate the original Bytecode output of the
Java compiler into specific machine code while the
program is being read from the disk or network.

Java is Object-Oriented
Java was based on C++ with several features
removed, and a few added to force programmers to
adhere to a strict object-oriented paradigm. In Java
strings are treated as objects rather than arrays. A
strictly object-oriented language has advantages for
developing a CBPR by facilitating sharing of
reusable modules of code and enabling local
extensions and variations to build on a common
system structure.

Java is Dynamic
The Java language was designed to adapt to
changing environments found on networks and to
facilitate the development of self maintaining code.
The HotJava web browser was the first substantial
application written entirely in Java and was designed
as a modular self-updating application designed to
integrate new protocols and new data types is a
seamless dynamic fashion. A dynamic and extensible
language is useful for developing a CBPR

772



Java is Safe and Secure
Java was designed to address network security and
prevention of programning errors which are two
fundamental problems in modem software
development. The Internet is inherently public and
insecure, therefore Java has safeguards to prevent
abuse. Virus resistance was designed into the Java
language. While no system can be perfect, the design
goals have received considerable attention and
detected failures of the network security have been
corrected rapidly. Java Applets which are loaded
from web pages are constrained to make them secure
by restricting file access, TCPEP sockets, and URLs
to the server where they originated. Java applications
installed on the user's workstation can function over
the Internet in a client server mode as well as access
local disk files. The Java language was designed to
prevent programming bugs and errors by forcing
programmers to anticipate error conditions or their
programs will not compile. Java is a strongly typed
language which has also removed many potentially
error prone features of C++ such as pointer
arithmetic and memory allocation.

Java is Multi-Threaded
Multi-threaded programming was designed into the
Java language and does not require knowledge or use
of any special operating system features. Individual
threads run concurrently as part of the same
application process and are synchronized when
necessary by Java monitors. Java implements its own
priority and scheduling algorithms to control
threads. Multi-threaded operations are useful for a
CBPR to allow automated quality assurance to occur
in the background with immediate feedback to the
physician. They can also be used to support
assembling an integrated patient record from
multiple practices distributed over the Internet.
Threads can be used to insert random and
spontaneous behavior into a user interaction
increasing user alertness and helping users to learn
complex systems and browse complex data.

Java is Network Aware
Java was designed to run in a network environment
and provides the programmer with easy access to all
basic network protocols and functions which
facilitates and speeds developing client server
applications. Data can be distributed and files or
images are located using standard Uniform Resource
Locator (URL) syntax. The network capabilities of
Java can support a distributed CBPR spanning
multiple sites and providers as well as support
distributed computing within a single institution.

Java Uses the JDBC to Access SQL Servers
The Java Database Connectivity (JDBC) Application
Programming Interface (API) allows Java

programmers to access SQL databases in a
standardized, platform independent, and vendor
independent mode.4 JDBC was based on the Open
Database Connectivity (ODBC) model and JDBC
provides a bridge for using existing ODBC drivers
until vendors provide their own JDBC drivers. The
JDBC drivers require no operating system
configuration on each client because all environment
settings are made using JDBC calls.

Java is Not Stateless
A common misconception about Java is the
assumption that since it is part of the World Wide
Web (WWW) it suffers from the limitations of
statelessness which must be overcome by other
strategies for implementing CBPR access through
web browsers. Java is a programming language and
has the same attributes of state found in any C
language program. Java can take advantage of
stateless connections to any URL on the WWW, but
it also can maintain its own dedicated TCPIP sockets
or use local or remote disk file access to maintain
state.

Java is Being Represented as a Paradigm Shift
The developers of Java are trying to promote it as
more than a new programming language, but instead
as a key enabling technology in a paradigm shift as
significant in the history of computing as the
development of stored programs, the shift from
mainframes to minicomputers, and the shift from
minicomputers to personnel computers. As in
previous paradigm shifts, the old technology does
not disappear, thus we still have mainframes, but we
now have choices. Even in the Netvork Age, we will
still use platform specific complex applications
written in C++, but we will have the choice of
platform independent, network aware, Java
applications. While development and use of mini-
computer based CBPR will continue, the Java
paradigm offers attractive choices.

SOFTWARE REQUIREMENTS OF CBPR

Shortliffe, Barnett, and McDonald6 have summarized
the key functional requirements of a CBPR which
form a framework for evaluating Java.

Database Structure
The Database structure of a CBPR constrains the
ype of data elements, their relationships, and
indexing within a system. The proposed ASTM
standard for structure of the CBPR defines seven key
linked components of structure: Patient, Provider,
Encounter, Problem, Observation, Order, and
Service. Java is well suited to implementing the type
of data structure required by a CBPR Java classes
provide an effective tool for implementing an object

773



oriented database model for a CBPR using standard
SQL tools.

Content
The content of a CBPR refers to the range of clinical
data it includes. A mini-record might consist only of
a problem list, medication list, and lab summary
while a complete record would include many
sections including allergies, immunizations, and
radiology. Complete records will incorporate images
and free-text as well as coded data and numeric
results. Java provides methods for coping with the
variable content of different CBPRs by writing Java
classes as "Content Handlers" for different types of
content in a CBPR. Appropriate content handling
classes are downloaded and used dynamically to
handle new content. The classes for handling the
content are stored on the same server with the data
itself. Java can also customize display menus and
format in response to a particular implementation of
a CBPR.

Coding
The utility and uniformity of a CBPR is highly
dependent upon the ability to code as much of the
information in the record as possible. Diagnoses,
Medications, and Procedures have widely accepted
coding schemes, but coding of the rest of the clinical
encounter remains an area of active development and
study. The Uniform Medical Language System
(UMLS)7 project of the National Library of Medicine
(NLM) is helping to promote sharing and translation
of clinical coding systems. Java is well suited to
integrating UlMLS databases and concepts into a
CBPR through reusable software modules
implemented as Java classes. Java also provides a
mechanism for sharing local coding systems on an as
needed basis through client server applications.

An integrated lifelong CBPR creates additional
codio.g challenges due to the variations in level of
detail used by different specialties and physicians for
the same types of examinations. Consider the coding
of the physical examination of the ear done by a
Pediatrician, an Internist, or an Otolaryngologist.
The object oriented features of Java allow
development of alternative versions of the same
coding classes for use by different specialties
supporting hierarchical levels of detail and summary
or translation of codes.

Display Format
The same information content of a CBPR can be
displayed in multiple forms and formats. The
dynamic nature of Java makes it particularly suitable
for developing interactive customs displays of
clinical data. The failure of physicians to recognize
abnormal findings in medical records is well

documented. The improvements in legibility and
organization which are inherent in a CBPR are often
accompanied by increase in data volume and more
detailed documentation of normal or redundant
findings. Java has now become synonymous with a
"wake-up" call for the network. The ease of
implementing animation in Java and the ability to
use multi-threading to introduce spontaneous and
random behavior has enormous potential for
increasing the attention given to findings in CBPRs.
Java can be used to make reading a CBPR fun and
interesting.

Security and Confidentiality
Security and confidentiality controls are key
essentials for any CBPR and the subject of much
current debate.8 Protection of the integrity of the data
and controls on access to the data are easy to
implement in Java. The Java security package and
API is still under design and development, but will
eventually provide a standard toolkit for security on
the Internet. In the interim, user written Java classes
can implement needed encryption, authorization,
and authentication routines.

Data Capture Methods
Capturing clinical data remains one of the most
important barriers to the growth and dissemination
of the CBPR. Pen based computing,9 handwriting
recognition, and voice recognition are making
important advances in facilitating rapid and
acceptable physician computer interaction.
Unfortunately, Java has little to contribute to
integration of new input technologies, but Java is
very useful for rapid prototyping of Graphical User.
Interfaces (GUI) and keyboard input systems.

The main contribution of Java to data capture will
probably lie in facilitating complex and high
performance user interfaces on low cost machines
designed to browse the Internet. Java originated from
a consumer electronics project at Sun Microsystems
and was originally planned for use on Personal Data
Assistants (PDAs). Proposed Java boxes using a
microprocessor implementation of the Java virtual
machine have much in common with X-window
terminals as a user interface device. They are likely
to be cheaper, more flexible, and more powerful due
to mass marketing potential as Internet browsers.
Low cost Java terminals may open up new
opportunities for bedside and exam room input and
display terminals that may become significant factors
in dissemination of CBPR, and offer alternatives to
portable computer devices such as pen based
computers. Java enables these dedicated Internet
access computers to be diskless workstations, but
addition of a patient data card interface conforming
to ASTM 31.18 standards would expand their

774



functionality as a clinical data input device.

Clinical Reminders and Automatic Quality
Assurance Protocols
The coupling of a CBPR with expert systems to
support clinical decision making and automated
quality assurance protocols is a key advantage to
using a CBPR.'° Java threads can be used to
implement reminder systems which provide
immediate feedback during, data entry or review.
Java can be used to share protocols over the Internet
thus encouraging development of libraries of
protocols which can be coupled to a greater variety
of CBPR implementations. The ASTM has proposed
using the Arden Syntax as a basis of writing clinical
reminders and Java will be a good medium for
making this functionality widely available.

Flow Charts and Graphical Displays
Java is particularly well suited to adding tabular and
graphical summa displays to a CBPR in a multi-
platform environment. The AWT implements the
necessary drawing and windowing tools and helps
the programmer to write code which can adapt
displays to different print or display capabilities. The
use of multiple threads can help to support data
exploration and concurrent generation of alternative
displays of the same data. Animation can be used to
help highlight and illustrate significant trends in
data or compare patterns of events over time in
different episodes of illness or different patients.

Family Oriented Records
Java threads can help to assemble family oriented
records by integrating data from multiple records.
Separate Java threads can build and maintain Family
problem lists and family encounter summaries for
review when any family member is seeing a
physician.
SCENARIOS OF CBPR ON THE INTERNET

It is important to consider alternative strategies for
implementing a CBPR on the Internet using the Java
language.

File Transfer
The simplest approach to transferring CBPR on the
Internet is to transfer the entire file is a standardized
format such as the ASTM 1238-94 which is
independent of the system on which it was created or
on which it will be used. This is analogous to the
manual methods of photocopying and then mailing
or faxing records between physicians subject to
written consent from the patient. Java can be used to
extract data from the ASTM format and load the
data into the local database which will most likely be
an SQL server. Any Java-based CBPR should the

ability to import and export patient data in ASTM
format. Java classes for this purpose can be shared
among developers of Java CBPR The disadvantage
of the file transfer approach is that large amounts of
data may be transferred when only a few key entries
are needed. Furthermore, file transfer is a one time
event and data must be updated in the future.

Java Applets on a Central Server
Java Applets provide a very useful strategy for
sharing CBPR over the Internet in a secure and
efficient manner. Applets are distributed applications
which are attached to HTML web pages and are
invoked by an Applet HTML tag. Applets execute on
the user's client computer, but may access only data
from the same server from which they were
launched. Applets provide a safer and more powerful
tool than using standard web pages to provide
remote access to a CBPR but they lack the full
flexibility of Java applications which can access local
file systems and have full network access privileges.

Applets can be used to handle encryption and secure
data display by encrypting the data before it is stored
on the server files and then decrypting it using
locally entered passwords and algorithms running on
the local client. The main use for Applets will be
distribution and exploration of new data and
methods from insecure servers. Applets could
support some data retrieval activities such as remote
access to hospital records or community wide
immunization systems. A new category of trusted
Applets is under consideration and will probably be
added to the Java language

A Patient Record Transport Protocol (PRTP)
The Hot Java web browser was implemented as a
modular extensible application which could be used
to add new network protocols easily in the future
without replacing the entire program. Current web
browsers typically implement Hypertext Transport
Protocol (FITP), File Transfer Protocol (FTP),
Gopher, Telnet, and others. One strategy for sharing
patient records on the Internet would be to create a
new network protocol specifically for using CBPR on
the Internet which would include encryption,
confidentiality protection, self defining records, and
interactive code dictionary transfers. The Java
language could implement such a protocol and
facilitate adding it to a modular browser such as
HotJava which is written in Java.

Client Server Applications Written in Java
Benefits of client-server approaches to CBPR have
been demonstrated but rarely used." Java is an ideal
programming language for writing client server
applications which add new functions and services to
the Internet. The server program runs on the patient

775



record server and offers its Internet service on a
designated server port number similar to current ftp,
telnet, popmail, database and other server protocols.
A separate client program, mnning on the same or a
different machine, opens a connection to that port
and exchanges data packets through a structured
dialog. The server application can also open other
needed connections to database servers to obtain data
which it needs to satisfy a client request for data.

Using the multithreaded features of Java, a client
server CBPR could simultaneously communicate
with several different physicians who see that same
patient and dynamically build a truly patient
centered CBPR by merging data such as problems
and medications from the CBPR of the individual
physicians.

EXPERIENCE WITH JAVA PROTOTYPES

To test the theoretical advantages and capabilities of
Java, we are developing two prototype CBPRs
written in Java. The first is a simple ambulatory
record designed for teaching CBPR concepts to
medical students and residents during their rotations
in physician's offices. The Java application
communicates over a TCPIP socket with a MUMPS
application which is used to store and retrieve the
medical record data. Using MUMPS for the data
server provides a flexible environment for modeling
and exploring a PRTP based on exchange of simple
text messages similar in function to HL7 messages.
The Java application provides a GUI not available in
older MUMPS-based systems. Developing a
prototype in Java permits use from multiple sites and
a variety of computer platforms. Pilot testing the
prototype with medical students facilitates
experimentation without the need for concern about
production needs of a practice or the need for a
complete record. Since students and residents will
use only a few records per day, the portability and
efficiency of the Data Entry Interface is not a
limitation to exploring other features of the CBPR.

The second project uses a Java display client to
generate laboratory data summaries from hospital
laboratory data stored in an SQL database clinical
data repository. We are using a Java Applet for the
display client which communicates with the server
using a Java controlled TCPIP socket with its own
simple security protocol. A Java application is used
as a middle-tier information server which uses JDBC
to access a Sybase SQL server via an ODBC driver.
This approach is similar to the W3-EMR
architecture used by Kohane12, but it is implemented

entirely in Java. An extended goal of the system is to

integrate results from outside laboratories mandated
by managed care insurance companies with in-house
laboratory results to produce a single summar
record.

CONCLUSION

The Java programming language has many features
which make it ideal for development of a CBPR in a
network environment and for sharing CBPR data
between different medical practices over the Internet.

References

1. Dick RS, Steen EB. The Computer-Based
Patient Record: An Essential Technology for
Health Care. National Academy Press 1991.

2. Cimino JJ, Socratous SA, Claton PD. Internet as
Clinical Information System: Application
Development Using the World Wide Web.
JAMIA 1995;2(5):273-284.

3. Gosling J, McGilton. The Java Language
Environment: A White Paper. Sun
Microsystems 1995.

4. Hamilton G, Cattell R. JDBC: A Java SQL API.
JavaSoft 1996.

5. Greenes R, et. al. Recording, Retrieval, and
Review of Medical Data by Physician-Computer
Interaction. NEJM 1970; 282:307.

6. Shortlife EH, Perreault LE. Medical
Informatics: Computer Applications in Health
Care. Addison-Wesley 1990.

7. Lindberg DAB, Humphreys BL, McCray AT.
The Unified Medical Language System. Meth
Inform Med 1993; 32:281-9 1.

8. Woodward B. The Computer Based Patient
Record and Confidentiality. NEJM 1995;
333(21): 1419-22.

9. Poon AD, Fagan LM. PEN-Ivory: The Design
and Evaluation of a Ped-Based Computer
System for Structured Data Entry. SCAMC
1.994; 18:447-51.

10. Barnett GO, Winickoff RN, Dorsey JL, et. al.
Quality Assurance Through Automated
Feedback Using a Computer-Based Medical
Information System. Med Care 1978;16:962-
970.

11. Chueh HC, Barnett GO. Client-Server,
Distributed Databased Strategies in a Healthcare
Record System for a Homeless Population.
SCAMC 1993;17:119-124.

12. Kohane IS, Greenspun P, Fackler J, et. Al.
Building National Electronic Medical Record
Systems via the World Wide Web. JAMIA
1996;3: 191-207.

776


